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Abstract The associated relaxation time and the intensity correlation function of a bistable system driven
by an additive and a multiplicative coloured noise with coloured cross-correlation are investigated. Using the
Novikov theorem and the projection operator method, the analytic expressions of the stationary probability
distribution Pst(x), the relaxation time Tc, and the normalized correlation function C(s) of the system
are obtained. The effects of the noise intensity, the cross-correlation strength λ and the cross-correlation
time τ are discussed. By numerical computation, it is found that the cross-correlation strength |λ| and
the quantum noise intensity D decrease the relaxation of the system from unstable points. The cross-
correlation time τ delays relaxation of the system from unstable points. The cross-correlation strength λ
and the cross-correlation time τ can alter the effects of the pump noise intensity Q. Thus, the relaxation
time Tc is a stochastic resonant phenomenon, and distribution curves exhibit a single-maximum structure.

PACS. 05.40.-a Fluctuation phenomena – 02.50.-r Probability theory, stochastic processes – 05.10.Gg
Stochastic analysis methods

1 Introduction

A bistable system with noise is a typical and impor-
tant problem in statistical mechanics. It is related to
many practical problems, including quenching phenom-
ena [1–3], bistable optical systems [4, 5], stochastic reso-
nant phonomenona [6–9], etc. In most previous work, noise
sources are usually treated as uncorrelated random vari-
ables, since it is usually assumed that they have differ-
ent origins. However, in some practical cases, sources of
noise may have a common origin, and hence can be cor-
related [11, 12]. There are other situations where strong
external noise can engender changes in the internal struc-
ture of a system so that the internal noise and the exter-
nal noise should be independent [12–15]. Bistable systems
with correlation noise terms are the subject of other stud-
ies [15–27]. Hanggi et al. first investigated colour effects
in the activation rate of a bistable system [14]. Marchi
et al. studied the resonant activation for a bistable sys-
tem driven by an additive and a multiplicative noise [17].
Using the Novikov theorem and the steady-state value of
the deterministic theory, Jia and Li analyzed the steady-
state properties of the bistable kinetic model with cross-
correlation additive and multiplicative white noise [28].
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The associated relaxation time and the intensity corre-
lation function are important physical quantities to char-
acterize the statistical behaviour of a stochastic process,
and hence are usually used to describe the fluctuation be-
haviour of a nonlinear system [29]. Research into the prob-
lem has shown that the associated relaxation time and
the intensity correlation function for nonlinear stochastic
systems are important physical features [30–33]. Apply-
ing the projection operator method, Xie and Mei inves-
tigated dynamical properties of a bistable kinetic model
with correlated noise [34]. Mei et al. considered the ef-
fects of cross-correlated white noise sources on the relax-
ation time and the correlation function of a bistable sys-
tem [35,36]. They described the statistical properties of a
bistable system with cross-correlation white noise sources.
Considering two input signals that consist of an additive
and a purely multiplicative random signal, Borromeo and
Marchesoni investigated asymmetric probability densities
in symmetrically modulated bistable devices [37, 38]. In
their work it is found that the correlation between an ad-
ditive and a multiplicative noise plays an important role in
the processes of a nonlinear stochastic system. Recently,
as the subject matures, attention has turned to stochas-
tic systems with cross-correlation additive and multiplica-
tive coloured noise sources. Ling et al. investigated the
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moments of the intensity of a single-mode laser driven
by additive and multiplicative coloured noise sources with
coloured cross-correlation [39]. Jin et al. [40] consider the
relaxation time of a single-mode dye laser system driven by
cross-correlation additive and multiplicative white noise
sources.

The purpose of this work is to consider the effects of
the cross-correlated coloured noise sources on the asso-
ciated relaxation time, and on the intensity correlation
function of a bistable system. In Section 2, the approxi-
mate Fokker-Planck equation (AFPE) is introduced for a
bistable system with cross-correlation additive and multi-
plicative coloured noise sources. This is solved the AFPE
for the stationary probability distribution (SPD). By us-
ing the projection operator method — in which the effects
of the memory kernels are taken into account — the an-
alytic expressions of the associated relaxation time and
the normalized correlation function of a bistable system
with cross-correlation coloured noise sources are derived.
In Section 3, based on the numerical results, the relax-
ation time and the correlation function, the effects of the
cross-correlation strength and the correlation time, and
the stochastic resonant activation for the bistable sys-
tem, are discussed. Thus, the important effects of cross-
correlation coloured noise sources to the statistical prop-
erties of a bistable system are demonstrated.

2 Stationary probability distribution,
relaxation time, and correlation function

Consider a conventional, symmetric, bistable, kinetic sys-
tem driven by cross-correlation additive and multiplica-
tive coloured noise, in which characteristics of the cross-
correlation time and the self-correlation time of the noise
sources may be different. The Langevin equation of this
general system is

dx

dt
= x − x3 + xξ(t) + η(t). (1)

Here ξ(t) and η(t) are zero-mean Gaussian noise sources,
whose statistical properties are

〈ξ(t)〉 = 〈η(t)〉 = 0, (2)

〈ξ(t)ξ(t′)〉 =
D

τ1
exp

(
−|t − t′|

τ1

)
, (3)

〈η(t)η(t′)〉 =
Q

τ2
exp

(
−|t − t′|

τ2

)
, and (4)

〈ξ(t)η(t′)〉 = 〈η(t)ξ(t′)〉 =
λ
√

DQ

τ3
exp

(
−|t − t′|

τ3

)
, (5)

where D and Q are the multiplicative coloured noise
and the additive coloured noise intensity, respectively.
τ1 and τ2 are the self-correlation time of the multiplica-
tive noise and the additive noise, respectively. τ3 is the
cross-correlation time of the multiplicative and additive
coloured noise sources.

By virtue of the Novikov theorem [41], Fox’s ap-
proach [42], and the ansatz of Hanggi et al. [43], the ap-
proximate Fokker-Planck equation corresponding to equa-
tion (1) with equations (2–5) is obtained [16, 27, 28]:

∂P (x, t)
∂t

= LFP P (x, t), (6)

LFP = − ∂

∂x
f(x) +

∂2

∂x2
G(x), (7)

where

f(x) = x − x3 +
Dx

1 + 2τ1
+

λ
√

DQ

1 + 2τ3
, (8)

and

G(x) =
Dx2

1 + 2τ1
+

2λ
√

DQx

1 + 2τ3
+

Q

1 + 2τ2
. (9)

Note that since τ1 ≥ 0, τ2 ≥ 0, and τ3 ≥ 0 satisfy the
approximate Fokker-Planck equation (6) when 1 + 2τ1 >
0, 1 + 2τ2 > 0, and 1 + 2τ3 > 0, there is no restriction
on τ1, τ2, and τ3 [25]. Now consider the case of the self-
correlation time and the cross-correlation time satisfying
τ1 = τ2 = τ3 = τ , then

f(x) = x − x3 +
Dx

1 + 2τ
+

λ
√

DQ

1 + 2τ
, (10)

and

G(x) =
Dx2

1 + 2τ
+

2λ
√

DQx

1 + 2τ
+

Q

1 + 2τ
. (11)

The stationary probability distribution of the system can
be obtained from equation (6) with equations (10, 11):

Pst(x) = N

(
Dx2

1 + 2τ
+

2λ
√

DQx

1 + 2τ
+

Q
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)β1

× exp
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× exp
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for 0 ≤ |λ| < 1; and

Pst(x) = N

(
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+
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DQx

1 + 2τ
+

Q

1 + 2τ

)β1

× exp

[
−1 + 2τ

2D
x2 + 2λ (1 + 2τ)

√
Q

D3
x

]

× exp
[ − (1 + 2τ)
Dx + λ

√
DQ

]
(13)

for |λ| = 1, where

β1 =
1 + 2τ

2D

[
1 +

Q

D

(
1 − 4λ2

)] − 1
2
, (14)

β2 = − λ (1 + 2τ)
D
√

1 − λ2

[
1 +

3Q

D
− 4Qλ2

D

]
, (15)
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and N is the normalization constants for equations (12)
and (13). The normalization constant N is determined by

∫ ∞

−∞
Pst(x)dx = 1. (16)

The expectation values of the nth power of the state vari-
able x are given by

〈xn〉 =
∫ ∞

−∞
xnPst(x)dx. (17)

For a general stochastic process for which a steady state
exists, the stationary correlation function is defined by

C(s) = 〈δx(t + s)δx(t)〉st = lim
t→∞〈δx(t + s)δx(t)〉, (18)

where δx(t) = x(t) − 〈x(t)〉. The normalized correlation
function is

C(s) =
〈δx(t + s)δx(t)〉st

〈(δx)2〉st
. (19)

The associated relaxation time which describes the fluc-
tuation decay of the dynamical variable x is defined by

Tc =
∫ ∞

0

C(t)dt. (20)

By using the projection operator method [35], the zero-
order approximation for the relaxation time is given by

Tc = γ−1
0 =

〈(δx)2〉st

〈G(x)〉st
. (21)

Similarly, the first-order approximation for the relaxation
time is given by

Tc =
[
γ0 +

η1

γ1

]−1

, (22)

where

η1 =
〈G(x)f ′(x)〉st

〈(δx)2〉st
+ γ2

0 , (23)

and

γ1 = −〈G(x)[f ′(x)]2〉st

η1〈(δx)2〉st
+

γ3
0

η1
− 2γ0. (24)

Employing equations (10–17, 21, 23) and (24), gives

γ0 =
b1k2

〈(x)2〉st − 〈x〉2st

, (25)

η1 =
b1 [(1 + Db1)k2 − 3k4]

[〈(x)2〉st − 〈x〉2st]
+ γ2

0 , (26)

and

γ1 =
−b1

η1 [〈(x)2〉st − 〈x〉2st]

× [
(1 + Db1)2k2 − 6(1 + Db1)k4 + 9k6

]

+
γ3
0

η1
− 2γ0; (27)

where

b1 =
1

1 + 2τ
, (28)

k2 = D〈x2〉st + 2λ
√

DQ〈x〉st + Q, (29)

k4 = D〈x4〉st + 2λ
√

DQ〈x3〉st + Q〈x2〉st, and (30)

k6 = D〈x6〉st + 2λ
√

DQ〈x5〉st + Q〈x4〉st. (31)

Here, we see that the zero-order approximation of the re-
laxation time Tc = γ−1

0 is in good agreement with the
result calculated via the Stratonovich-like ansatz in refer-
ence [44]. When λ = 0 and Q = 0, the above results reduce
to equations (2.29–2.31), as presented in reference [30]. In
other words, the Stratonovich-like ansatz completely ne-
glects the memory kernel.

Applying the projection operator method and per-
forming the converse Laplace transformation [35], the sta-
tionary correlation function is

C(s) = β exp(−π−s) + (1 − β) exp(−π+s), (32)

where
β =

γ1 − π−
π+ − π−

, (33)

and
π± =

γ0 + γ1

2
± 1

2

√
(γ0 − γ1)2 − 4η1. (34)

3 Discussion and conclusions

Equation (1) represents a physical model of a bistable sys-
tem driven by cross-correlation additive and multiplica-
tion coloured noise sources corresponding to the potential
V (x) = −x2/2 + x4/4. The statistical properties of this
stochastic system are obtained by numerical solution of
the equation.

The relaxation time gives dynamical information
about the time scale of the evolution of a spontaneous
fluctuation in the steady state, which reflects the evolu-
tion velocity of the system from an arbitrary initial state
to the steady state [29]. The relaxation time distribution
curves of the bistable system are plotted in Figures 1–3

In Figure 1a, the Tc − λ curves are symmetrical about
the axis λ = 0. When |λ| is smaller, the values of the
correlation function increase as τ increases, while for a
fixed τ the size of the correlation function is almost un-
changed when |λ| increases. However, when |λ| is larger,
the values of the correlation function decrease rapidly as
|λ| increases. Figure 1b shows that the effects of the cross-
correlation strength λ are only determined by the absolute
values of λ. It is seen that when |λ| is smaller, the relax-
ation time increases as τ increases; when |λ| is larger, the
relaxation time decreases as τ increases.
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Figure 1. (a) The relaxation time Tc as a function of the
cross-correlation strength λ for D = 1 and Q = 0.25. τ is 0,
0.1, 0.5 and 0.9 respectively. (b) The relaxation time Tc as a
function of the correlation time τ for D = 1 and Q = 0.25. λ
is 0, ±0.3, ±0.6 and ±0.9, respectively.

Figures 2 and 3 show the effects of the pump noise in-
tensity D and the quantum noise intensity Q. An interest-
ing stochastic resonant phenomenon for a bistable system
is also seen. In Figure 2, the relaxation time Tc decreases
monotonously as the noise intensity D increases. D expe-
dites the relaxation of the system from unstable points,
which when D < Q, the effects are most obvious; when
D > Q, the effects are dampened. In Figure 2a, the cor-
relation time τ is fixed to be 0.5: the relaxation time Tc

decreases as the cross-correlation strength |λ| increases.
In Figure 2b, |λ| is fixed to be 0.5: the relaxation time Tc

increases as τ increases. Figure 3 shows that when both
|λ| and τ take smaller values, Tc decreases monotonously
as the noise intensity Q increases. When both |λ| and τ
take larger values, the Tc distribution curves exhibit a
single-maximum structure, and a stochastic resonant phe-
nomenon occurs. When τ is fixed (Fig. 3a) the height of
the peak of Tc decreases as |λ| increases. In contrast, when
|λ| is fixed (Fig 3b) the height of the peak of Tc increases
as τ increases.

The correlation function C(s) describes the dynami-
cal fluctuation decay of the variable x with time in the
steady state, which reflects the related activity between
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Figure 2. The relaxation time Tc as a function of the noise
intensity D for Q = 0.25. (a) τ = 0.5, λ is ±0.1, ±0.5, and ±0.9,
respectively. (b) λ = ±0.5, τ is 0, 0.5, and 1, respectively.

two states at different time. Figure 4 shows that C(s)
decreases exponentially as the decay time s increases. In
Figure 4a, τ is fixed at τ = 0.2; the size of the correlation
function decreases as |λ| increases, and the effects of λ are
only determined by the magnitude of λ. In Figure 4b, |λ|
is fixed at λ = 0.2; C(s) increases as τ increases. In Fig-
ure 4c, τ is fixed at λ = 0.8; C(s) decreases as τ increases.

From the above, we conclude that cross-correlation ad-
ditive and multiplicative coloured noise sources play im-
portant roles in a bistable system. The cross-correlation
strength |λ| weakens the related activity between two
states at different times, accelerates the evolution veloc-
ity, shortens the evolution time of the system from an ar-
bitrary initial state to the stable state, and enhances the
stability of the bistable system in the steady state. In con-
trast, the correlation time τ enhances the related activity
between two states at different times, decrease the evolu-
tion velocity, delays the evolution time of the system from
an arbitrary initial state to the stable state, and reduces
the stability of the bistable system in the steady state.
The noise intensity D and the cross-correlation strength
|λ| expedites the relaxation of the system from unstable
points, but the correlation time τ delays the relaxation
of the system from unstable points, which when D < Q,
the effects are most obvious; when D > Q, the effects
are dampened. The cross-correlation strength |λ| and the
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Figure 3. The relaxation time Tc as a function of the noise
intensity Q for D = 1. (a) τ = 0.5, λ is ±0.1, ±0.5, and ±0.9,
respectively. (b) λ = ±0.5, τ is 0, 0.5, 1, and 2, respectively.

correlation time τ can alter the effects of the noise in-
tensity Q. Thus, the relaxation time Tc is a stochastic
resonant phenomenon, and Tc −Q curves exhibit a single-
maximum structure, where the noise intensity Q = Q0 at
resonance. When |λ| and τ increase, Q0 becomes larger.
The correlation strength |λ| enhances the resonance of the
relaxation time; by contrast, the correlation time τ damp-
ens the resonance the relaxation time. In some interrelated
practical problems, such as quenching phenomena, optical
bistable systems, stochastic resonances, new applications
to nanodevices [46], etc., the stability of the bistable sys-
tem in the steady state can be improved by choosing suit-
able values for |λ|, τ , D, and Q.
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